metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lin Ping,^a Zhi-Cheng Wang^a and Seik Weng Ng^b*

^aSchool of Materials and Chemical Engineering, Zhongyuan Institute of Technology, Zhengzhou, Henan 450007, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 291 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.034 wR factor = 0.097 Data-to-parameter ratio = 18.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[[bis(*p*-toluenesulfonato- κ O)cadmium(II)]-bis(μ_2 -1,3-di-4-pyridylpropane- $\kappa^2 N$:N')]

The Cd atom in the title polymeric structure, $[Cd(C_7H_7O_3S)_2(C_{13}H_{14}N_2)_2]_n$, exists in a slightly distorted *trans*-N₂O₄Cd octahedral geometry; the Cd atom lies on a special position of 2 site symmetry. The *p*-toluenesulfonate ligand coordinates in a monodentate mode to the Cd atom, and the 1,3-di-4-pyridylpropane ligand links adjacent Cd atoms into a layer structure.

Comment

The product of the reaction of cadmium bis(*p*-toluenesulfonate) and 4,4'-bipyridine is a 1:1 adduct, which exists as a polymeric structure in which the Cd atom is bridged by two sulfonate groups, as well as by the 4,4'-bipyridine spacer ligand, in a slightly distorted *cis*-N₂O₄ octahedral geometry (Ping *et al.*, 2006). A similar synthesis using the more flexible 1,3-di-4-pyridylpropane ligand has yielded the title 1:2 metalligand adduct, (I), in which the metal shows slightly disorted *trans*-N₄O₂ octahedral Cd coordination. The sulfonate group coordinates in a monodentate mode to the Cd atom and the two spacer ligands bridge adjacent metal atoms into a layer structure. Part of the polymeric structure of (I) is shown in Fig. 1 and selected bond lengths and angles are given in Table 1.

Experimental

© 2006 International Union of Crystallography All rights reserved Cadmium sulfate (0.21 g, 1 mmol) was dissolved with sodium *p*-tolunesulfonate (0.20 g, 1 mmol) in a small volume of methanol (10 ml). 1,3-Di-4-pyridylpropane (0.20 g, 1 mmol) was added. Colourless crystals of (I) separated from the solution after a few days.

Received 12 July 2006 Accepted 13 July 2006

Crystal data

 $\begin{bmatrix} Cd(C_7H_7O_3S)_2(C_{13}H_{14}N_2)_2 \end{bmatrix} \\ M_r = 851.30 \\ Orthorhombic, Pnna \\ a = 24.101 (2) Å \\ b = 17.286 (1) Å \\ c = 9.2556 (6) Å \\ V = 3856.0 (5) Å^3 \\ \end{bmatrix}$

Data collection

Bruker APEXII area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.790, T_{\rm max} = 0.892$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0459P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.034$	+ 3.6136P]
$wR(F^2) = 0.097$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
4435 reflections	$\Delta \rho_{\rm max} = 0.98 \ {\rm e} \ {\rm \AA}^{-3}$
241 parameters	$\Delta \rho_{\rm min} = -0.75 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cd1-O1	2.321 (2)	Cd1-N1 ⁱ	2.347 (2)
Cd1-O1 ⁱ	2.321 (2)	Cd1-N2 ⁱⁱ	2.337 (2)
Cd1-N1	2.347 (2)	Cd1-N2 ⁱⁱⁱ	2.337 (2)
O1-Cd1-O1 ⁱ	179.7 (1)	O1 ⁱ -Cd1-N2 ⁱⁱⁱ	89.0 (1)
O1-Cd1-N1	87.9 (1)	N1-Cd1-N1 ⁱ	84.7 (1)
O1-Cd1-N1 ⁱ	92.3 (1)	N1-Cd1-N2 ⁱⁱ	94.6 (1)
O1-Cd1-N2 ⁱⁱ	89.0 (1)	N1-Cd1-N2 ⁱⁱⁱ	178.5 (1)
O1-Cd1-N2 ⁱⁱⁱ	90.9 (1)	N1 ⁱ -Cd1-N2 ⁱⁱ	178.5 (1)
O1 ⁱ -Cd1-N1	92.3 (1)	N1 ⁱ -Cd1-N2 ⁱⁱⁱ	94.6 (1)
O1 ⁱ -Cd1-N1 ⁱ	87.9 (1)	$N2^{ii} - Cd1 - N2^{iii}$	86.3 (1)
O1 ⁱ -Cd1-N2 ⁱⁱ	90.9 (1)		

Symmetry codes: (i) $x, -y + \frac{3}{2}, -z + \frac{3}{2}$; (ii) $x + \frac{1}{2}, y, -z + 1$; (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

H atoms were positioned geometrically, with C-H distances in the range 0.93–0.97 Å, and were included in the refinement in the riding-model approximation, with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve

28015 measured reflections 4435 independent reflections 3453 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.033$ $\theta_{\text{max}} = 27.5^{\circ}$

Part of the polymeric structure of $[Cd(C_{13}H_{14}N_2)(C_7H_7SO_3)_2]_n$. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Symmetry codes are given in Table 1.

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank Luoyang Normal College for the diffraction measurements. We also thank Zhongyuan Institute of Technology and the University of Malaya for supporting this study.

References

Bruker (2004). SAINT (Version 7.12A), SHELXTL (Version 5) and SMART (Version 7.12A). Bruker AXS Inc., Madison, Winsonsin, USA.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Ping, L., Wang, Z.-C. & Ng, S. W. (2006). Acta Cryst. E62 m1878-m1879.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.